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Abstrgat

The equations of motion of a ship constrained to oscillate in

heave, pitch, and roll, while moving ahead with a uniform velocity

in oblique waves are studied. It is shown that because of the non-

linear static coupling which is known to exist between theae degrees

of freedom, the rolling response can become large when the period of

wave encounter is in the neighborhood of one half the natural rolling

period. In this case the response has a .period which is equal to

twice the period of the excitation, and which, as a consequence, is

nearly equal to the natural period.
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List of j.mbols

x,. y, T " 41sploceme. s of *hip 6long x, y, z-axes (surge,

sway and heave).

S rotations about x, y, z-axis (roll, pitc and

yaw).-

u r component of ship velocity along x-axes.

q mass moment4 of inertia about x. y-jxes.

M p coa;potents of momept along x, y-axes.

2" - componont of force along z-axis.

2A R wave height.

L - ship length.

A: wave lqngth.
9 a'= freqzency of wave encounter.

04- headiog of ship with respect to direction of

wave travel.

" fraction of critical damping.

Dots denote time differentiation.



tn the study of ship nations, as in the study of the notion of

s-py rigid body, two approaches are generally used to refine the

Uliar-theory: One may introduce refineuments in the terms already

'a#p#.arjng in the linearized equations of motion (e.g. added mass

anid dkping term) or one may introduce higher order terms into the

* .qdi4ons. It is the latter approach which is adoptd in this -paper.

Vha nonlinear terms retained in the equations of notion are,

4at. part, the sae second order static coupling terms

"."Paulling and Rosenberg [1) Kinney (2.,51 -and Hsu [3,4].

Tbkdifference between the investigation presented her's and the ones

ju91 c~ited is that here we consider the ship free to oscillate simul-

ta*aOdUly in the degrees of freedom of heave, pitch, and roll while

.ving-ahead with uniform velocity in oblique waves, and-include the

etf~ecff second order damping in roll. It is shown ithat when the

ftequency of wave encounter is in the neighborhood of twice the

natiral rollift frequency, the roll amplitude may te=d to become

large,-and the rolling response may exhibit a period equal to twice

the period of the excitation, which, as a consequence, is nearly

.equal to the natural period.

MM'bers in brackets designate References at end of paper.
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1. Ecuations of Motion

Here, we shall derive the equations of motion of a rigid ship

executing motions about its equilibrium position. The purpose of

this discussion is two-fold:

(a) To state clearly, and to justify, all assumptions considered

necessary to render the problem tractable, and

(b) To demonstrate in what way all earlier analyses [1,2,3,4,5]

constitute special cases of this paper.

The coordinate axes are the xyz-triad whose origin coincides

with the mass center of the ship. The x-axis lies in the fore-and-

aft plane of symmetry of the ship; it is parallel to the design

water plane of the ship and is positive forward. The y-axis is posi-

tive to starboard, its eleveation being such that the xy-plane is

parallel to the design water plane. The z-axis is orthogonal to the

x and y-axes, and is positive downward. The six degrees of freedom

of the ship consist of translations parallel to the xyz-axes, and

rotations about them. The translations will be denoted by xy,z

respectively, and the rotations by: 9 about the x-axis, e about

the y-axis, and V about the z-axis. The translations are positive

in the positive directions of the axes, and the rotations are posi-

tive in accordance with the right-hand rule. All coordinates are

zero in the equilibrium position.

Asumtion A:

The ship is rigidly constrained in sway and yaw, i.e. U-

and the surging motion is prescribed to be uniform.

Just cication:
-,,,'.,' ",,.:' The above assumption in made because it is the explicit purpose
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of this analysis to examine only motion in the remaining

degrees of freedom.

Assumption B:

The xyz-axes are principal axes of the ship.

Justification:

Ships to be considered here possess athwart-ship syrnetry and

nearly fore-and-aft synetry. The deviation from the latter

is so small that this assumption is considered justified.

Under Assumptions A and B, the equations of motion are those

in heave, pitch, and roll; they are

S(1.1)

where a is the mass of the ship, ly and Ix are the mass moments of

inertia about the y and x-axes respectively, and , F , and

are the external forces or moments in heave, pitch, and roll

respectively.

Assumption C:

-- ,- f , and k are, in the neighborhood of the equilibrium

position, analytic functions of the displacements 1, 9 , ,

the velocities o6 , e , and the accelerations , ~

Justification:

If Assumption C were violated, linear analysis about the equi-

.librium would be inadmissable.

Thus, the right-hand sides of (1.1) may be represented by a general

expression

j
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where A ~ I)Q'm and since the coordinates vanish in the

equilibrium position,

S ) )oo,o)oo, 0 ) 0

Moreover, in view of Assumption C, every may be expanded in a

Taylor's series about the equilibrium position.

Assumption D:

The Taylor's series expansion of the Q. will include only

terms up to and including second order.

Justification:

It is the explicit purpose of this analysis to examine certain

second order effects.

Writing temporarily * ) =O )t3 = , the terms on the

right-hand side of (1.1) become

~+

,, .,(1.2)

. tS %i o + '%k. -

where the partial derivatives are evaluated at the equilibrium

position.
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Assumption E:

All second order terms in (1.2) involving velocities and

accelerations (except for the term .j' ) will be
dIs!aded.

Justification:

This assumption is dictated largely by the lack of knowledge

of the magnitude of the ignored derivatives. The only term

retained here is the second order daping effect in roll; its

physical meaning is clear, its magnitude can easily be deter-

mined, and its effect is considered significant. There are,

however, other rational reasons for this assumption. Since the

present analysis is a refinement on linear analysis, one may

safely assume that the primary effects of velocity and accel-

eration on the motion are included by retaining the first order

terms in these quantities. Moreoever, this analysis is con-

cerned with the effect of static coupling on the stability of

the motion, and the discarded terms do not represent static

coupling.

Under all assumptions listed here, the equations of motion

became

:M,' + M 1 + M OO + M 6 + M O,* 1 (1.4)

+M0,06 +~ M'0 1 M%* a
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KS . b'r 2 h i od (1.5)

where the subscripts denote partial differentiation, where

moment and therefore should change sign with the velocity.

The equations (1.3), (1.4), and (1.5) simplify considerably

when the athwartship symaetry of the ship is utilized. In paxticular

=0j MI =Z M~ -Q

1<1 K W< i =K. K k 1111rKOO =Kl .ji 0Q

so that the equations of motion become

+ +Z +& L7 S(1.7)

G= M8 4-fr1.+M + ()

+.Li M 8 +f M 96 +M 0 .



-7-

Next we propose

Assu ptionF: z =M =0

Justification:

It can readily be shown numerically that the linear terms

and (110 8 account adequately for the heaving force due to

heaving, and the rolling moment due to roll. Moreoever, the

second order terms in this assumption do not represent static

coupling between degrees of freedom.

Assumption G:

The effect of a seaway on the motion will be taken into account

by adding terms Rj) , M(O) , and i (() , respectively to

the equations of motion.

Justification:

The waves are considered as known functions of time, and the

effect of the ship itself on the seaway is considered negligible.

Under Assumptions A to G, the equations of motion. become

(1.10)

M a O+M*846l

O+K 01 +K q(1.12)
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Not all of the partial derivatives in the equations of motion are

independent. In fact they satisfy the following relationships (1,2]

~ 4i (1.13)

Equations (1.10), (1.11), and (1.12), together with (1.13) are those

on which all future development is based.

Below, we examine the relation between these equations of

motion and those of earlier analyses. All contained

Assumption A': 2 = -- : O --.R mc,

Under this assumption the stability analysis of the motion is

reduced to the discussion of Mathieu equations which can be decoupled.

The equations of Hsu (3] emerge by considering the ship as

sy tric fore-and-aft, or

Assvaption B': 2 M o

08 00=I. =K(= o

and that the waves have sinusoidal shape and travel with uniform

velocity, or

Assumption C': = 0 C.O5 W6t

M(9 MNeo 5ill 'Lt
where J is the frequency of wave encounter.

In that case one finds Hsu's (3] equations

wb Ce a (1.14)

19 4- L ~ r10 e W~i~ct (1.15)

2. (1.16)-K =0

where use has been made of the notation
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Hsu's equation [4] are obtained by admitting as the only degrees

of freedom those of heave and pitch, or

Assu.mtion B" : M

and by assuming a calm sea, or

Assumption C": 0(.'= M(O oO

In that case one finds [4]

(1.19)

If one also proposes

Ass ,tion D": :M

Hsu shows that the solutions of (1.19) are always unstable.

If one admits only the degrees of freedom of pitch and roll

and includes linear damping in roll, but no damping in pitch, one

has

Assumtion B"': Mi = MW uk(t0

.and the equations of motion are those examined by Kinney [5]. They

are

(1.20)

~ k~4K 1< a0~
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If all damping is ignored, and any two of the three degrees of

freedom of heave, pitch, and roll are admitted, one finds the

equations of Paulling and Rosenberg [1] for

Heave-Roll:

4- (1.21)

Pitch-Roll: = e

S(1.22)

Heave-Pitch:

~=I e + M~ (1.23)

These last three pairs of equations [1] are those which have

initiated this study of the nonlinear static coupling effects on the

stability of ship motions.

To complete this discussion we shall present below a brief

summary of the results of the earlier analyses [1,2,3,4,5]. We will

show that all the equations of motion considered in these analyses

can be reduced to the standard form of Mathieu's equation, the

stability of which can be discussed in a straight forward manner.

We will therefore begin by giving a brief discussion of Hathieu's

equation.

The standard form of the Mathieu equation with damping is

where +2k44 +(S r 0 nh r r p(1.24)

where k,~ and E are three arbitrary parameters.
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The stability of a solution y-y(x) can be deduced from the

Ince-Strutt chart which consists of a series of curves S=S(t), which

divide the SC -plane into stable and unstable regions. For values

of $ and e which define a point inside of, or on the boundary of

an unstable region, the solution is unstable. Figure 1 shows an

approximation of the curves defining the boundary between the stable

and unstable regions for k- 0, due to Stoker (6], which is adequate

for moderate values of E

For k o the equation of the boundary curves between the

stable and unstable regions near 5 = 1/4 have been given in [51

for small values of 6 It is2

-~~I5 2 % (1.25)

where ' is the fraction of critical damping and is plotted in

Figure 2.

For a more detailed discussion of the solutions to Mathieu's

equations the reader is referred to McLachlan r7].

We shall now examine the stability of the solutions of the

equations of motion presented above.

2 The standard form of Mathieu's equation in [5] is

,. W ! ' instead of (1.24) so that the equation of the boundary
curve presented there is in terms of 2L and . The conversion
to and e is self-evident.
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The equations (1.14), (l.15),and (1.16) of Hsu [3) may be put

in standard form as follows: Equation (1.14) can be easily inte-

grated, giving

A r-0.5 d ) (1.26)

where

A ) I. L (1.27)

_____ ____ ((A) L il.

Substitution of (1.26) into (1.15) and (1.16) yields

6 A+ Co + t I-yj; (1.28)

ae+ Ce [L;- 1 osCA- d O M Osie 4Wt

which, in terms of a new time variable t defined by W 1- C ,

may be written as

-(+ 2 - + +
(1.29)

., a" .+ 2 ..# .+ ( +C- M t:' =. '.( .

where

~( 30)

2 K-M (1.31)

Both equations (1.29) are in standard form except for the inhomogeneous

term on the right hand side of the equation for & . However, as

Hsu poLnts out in [31, for such an equation in which the inhomogeneous
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term is harmonic with a frequency equal to that of the periodic co-

efficient appearing in the equation, the necessary and sufficient

condition that solutions be stable (unstable) is that the solutions

to the corresponding homogeneous equation be stable (unstable). For

a detailed discussion of this see [8].

We are therefore led to

Result I: Under the assumptions leading to equations (1.14), (1.15),

and (1.16), the stability of the pitching and rolling

motions of a ship moving forward with uniform velocity

in longitudinal waves is determined by the positions of

the pair of points ( S , 6 ) and (S , 68 ) in the

Ince-Strutt chart, where S9, - , So , and C8 are

given by (1.20) and (1.30). Instabilities are most

likely to occur when S., is near 1/4.

A detailed analysis of the stability of the solutions of

equations (1.19) is too lengthy to be included here. Hence we shall

only sketch the method used by Hsu [4] and state the result.

By denoting the solutions of (1.19) by and 6 (0 and by

introducing perturbations of these solutions, denoted by X, and X

respectively, one arrives at the equations of the first variation

with respect to and . By further assuming that -. Z -M u

-4 L. and that ( and *&) may be approximated with sufficient

accuracy by t~e~ ~Jtand 8G*(+t CCf& , these variational

equations take the form of a set of two coupled Mathieu equations.

Hsu then shows that by introducing new variables and 62. related

to X, and XL by the linear transformation
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%M X1-Il e X4
-

these equations decouple into two Mathieu equations, the solutions

of which are always unstable. The conclusion is

Result II: Under the &sstmptions leading to equation (1.19), the

heaving and pitching motion executed by a ship in calm

water are always unstable.

We now turn to equations (1.20). Introducing the notation

they can be written as

e4- W 1 =
(1.32)

The first of (1.32) can be integrated to give - oas~t-4). where Q
and are constants of integration and, without loss of generality,

we may set = • Substituting the resulting expression for

into the second of (1.32) gives the Mathieu equation

sk-_kC0) J~ (1.33)

which can be put into standard form by the change of independent

variable defined by t: . The result is

4 '642k4 +SC CkS+69=

where

S _. (1.34)
8L
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We are therefore led to

Result III: Under the assumptions leading to equation (1.20) the

stability of the rolling motion of a ship oscillating

in pitch and roll in calm water is determined by the

position of the point ( , ) in the Ince-Strutt

chart where So and 6 are given by (1.34). Insta-

bilities are most likely to occur when O is near 1/4.

Equation (1.23) has, in effect, already been discussed since it

is identical with (1.19), and the discussion of (1.21) and (1.22)

proceeds in a manner similar to that for (1.20), the only difference

being the absence of damping terms in the former. This then com-

pletes the discussion and we return to equations (1.10) (1.11) and

(1.12), the integration of which is the main subject of this paper.

Equations (1.10), (1.11), and (1.12) constitute a set of three

mnolinear, coupled, second order differential equations, and con-

sidering the present status of knowledge concerning such equations,

it is impossible to find their general solutions by analytical means.

Therefore, particular solutions will be obtained by means of an

electronic analogue computer under the conditions that the ship is

initially at rest. However, before proceeding to that phase of the

study it will be advantageous to gain some insight into the problem

by making some simplifying assumptions in the equations of motion

and proceeding analytically as far as possible, just as was done in

all preceeding analyses. We will show that under such assumptions

the equations of motion for pitch and roll reduce to the form of

inhomogeneous Mathieu equations, the stability theory of which is

well established. It should be stressed, however, that is is not
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our intention to test the validity of these assumptions by means of

the analogue simulation which is described later. Instead, the

analysis which follows is only intended to aid the analogue compu-

tation by indicating if and under what conditions instabilities may

be expected.

2. Simplified Analysis Based on Mathieu's Equation.

A great simplification in the equations of motion occurs when

the ship is assumed to be symnetrical fore and aft. Under this

assumption

M ~ M Mj 4j M.. =0

and equations (1.10) through (1.12) become

~ ~ (2.1)

6 -M S+N6+ 6 + M+N (t) (2.2)

k 96 + ko# 06+ + K00 + 1<+)(2.3)

Nowsovew j we neglect the tonsa j00$ and in (2. 1)
for the following reasoni Suppose that the pitching and rolling

motions are know functions of time and it is required to find I

lubstituting these known functions for 0 and B into (2.1) would

make the teoms J 00 and j 11,1 0' known functions of time
which could then be combined with I(t) ,the result being, as far
as I concerned, a modification in the external exoLitatLon and

it is not likely that such a modification would greatly alter the

phenomenon. Note, however, that a similar arment could not be
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used to neglect the terms M~5 and 9 in (2.2) and (2.3).

For suppose is a known function of time and it is required to

solve for 5 and 6 . Substituting this known function for into

(2.2) and (2.3) would have the effect of introducing time dependent

coefficients into the equations, which in turn would greatly alter

the character of the solutions.

For this analysis we will also disregard the nonlinear damping

factor in roll. With these simplifications then (2.1) through (2.3)

become

. (2.4)

CML (2.5)

K~t) (2.6)

where we have put

C - C& = M cO -:

to conform with the usual notation used in the theory of vibrations.

Assuming sinusoidal waves, the external excitation terms A.t)
MO , and m(() may be written in the form

(0)=- C 52wt + ;? L 4' )t (2.7)

M(t) = M, Cos Wt* + Mz 6' (At (2.8)

k, UoS LA + k 2i L (2.9)

or

Z(-t= -2ens(2.10)
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M "MO C -(W t: + ta) (2.11)

0Cos L A +--to) (2.12)

where C) is the circular frequency of wave encounter which depends

on the geometry of the waves, the heading of the ship with respect

to the direction of wave travel, and the speed of the ship. When

(2.10) is substituted into (2.4) it can be solved for , giving

A C'Cr (Lot +01 (2.13)

where

A o

Now (2.13) together with (2.11) and (2.12) may be substituted into

(2.5) and (2.6) yielding the inhomogeneous Mathieu equations

*++ M+ Ac;- A , cos, :a(Ls ,:,+jG =M° .,++,, (2.14)

These can be put into standard form by the change in time scale de-

fined by Z- +o( . The result is

where

ZCA" LZ(2.18)

Inhomogeneous Mathieu equations such as these where the inhomo-

geneous term has the same frequency as the periodic coefficient
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appearing in the equation have already been discussed above. There

it was stated that the stability of solutions of such equations is

the same as the stability of the solutions of the corresponding

homogeneous equations, the stability chart of which is given in Fig-

ures 1 and 2. From it we conclude that for large values of damping,

unstable solutions are not likely to occur. On the other hand, for

small values of damping, unstable solutions are most likely to occur

when b is in the neighborhood of 1/4 and 1. Since damping in pitch

is of the order of 50% of critical, it is not likely that unstable

pitching motion will occur. However, since damping in roll is only

of the order of 57 of critical (assuning no artificial devices such

as bilge keels are used), based on the abovecremarks we might expect

large roll angles for values of t) near 2 and

With this background we are now in a better position to investi-

gate the solutions of (1.10) through (1.12) on the analogue computer.

However, before we can perform the simulation we must choose definite

values for the coefficients appearing in the equations, which is the

subject of the next section.

3. Determination of Coefficients.

Since it would 'e prohibitive to examine solutions of (1.10)

through (1.12) for a variety of ship forms, we shall, for concrete-

ness, adopt the parent form of the Series 60, CB - 0.60, 5' ship

model. Many of the coefficients appearing in these equations may

be found from the lines drawing of the model, the values of which

are given on the next page.
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Z --K -11.1 16. K -ij 16.-A

#

z M 4= -e 1. fi =-34 16,

The calculations leading to these values may be found in the Appendix.

The remaining coefficients are known to depend on the speed and fre-

quency of oscillation of the model, and curves for determining these

terms may be found in [9]. However, for mathematical convenience

we will take these coefficients as constants equal to a value within

their range of variation. In this manner we find

v-. 1 .c5 -b'$.!/!+ I -I.=2.Z -s-c,-

Curves were not readily available for the determination of the

apparent mass moment of inertia and damping coefficients appearing

in the rolling equation of motion. Concerning the former, however,

a value has been found experimentally for this model (See [5]) for

rolling in calm water. It is

I K. 0. 04 54 1, 6 eC4
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and will be used here. Concerning the latter, we will take values

for the dmping coefficients equal to those obtained from the "curve

of extinction" as outlined in [10] using a free oscillation record

of the rolling motion in calm water obtained experimentally (See (5]).

We thus find

K. =-0.o168 Ib-4+-see. ) *=,-o.0342 I6-0r-seJ

Using these values, we then find from (1.6)

-_ " -2.

~ '~+Sec. M 0  860 sJK 24. 4- Ser

Z- -551 sec M6 =-2.5,9 se t  K -- o. M- .54-

,=--7.qs . M % -- ,.68 %g-se- K:-K. -o.7f4-

0M,---.o ,. M .SC,- K - 7 --

2. -2

z to-13oe, M 2 8 t-

The only terms remaining unspecified are the terms representing

the external excitation. For a given model they will depend, in

general, on the geometry of the waves and the heading of the model

with respect to the direction of wave travel, denoted here by oL.

We shall measure o( in such a way that ,:a O corresponds to head

seas, 1 - 900 corresponds to waves coming from the starbosld beam,

and o( - 1800 corresponds to following seas.
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From the simplified analysis based on Mathieu's equation we may

expect that for a given wave length, a , nd model heading, oCx

there will be certain values of LJ , or equivalently, certain values

of the models speed, L.) , for which the rolling motion will be un-

stable. We shall seek to determine this speed range for the following

three cases: (i) A is taken equal to L, the model length, and

O( assumes the values 150, 300, 450, 600, 750, 1050, 1200, 1350,

1500, 1650; (1i) /\ is taken equal to 1.5 L and )( assu.mes the

values 150, 450, 750, 1050, 1350, 1650; (iii) A is taken equal to

0.75 L and 0( assumes the same values as in case (ii). In all

cases the wave height, 2A, is taken equal to A/40.

The external heaving force and rolling and pitching moments

produced by the waves were computed using the Froude-Krylov theory

in conjunction with the "long wave approximation." The formulas used

for these computations are presented in the Appendix and the values

obtained are given in Table I. However, before these values may be

substituted in (2.7) through (2.9) they must be divided by the

apparent mass of the model in the case of heaving and the corre-

sponding apparent mass moments of inertia in the case of pitching

and rolling.

Using the above values for the coefficients the equations of

motion (1.10) through (1.12) become

-7.95 6"6+2 2 le-DZLA+ S\%,L

-8(..o e - -Z8 e -I.Ba# -S4.' (3.2)
-66 8 -6-o,'S69o *M ot I ,

= -Z4.,+96 - 0,1480-,7540t I -24496 (3.3)



-24-

Table I.

Case (i): A =L , 2A= A/40

o - 150: K1 " 0.0172 lb-ft. M1 " 4.95 lb-ft. " 0.610 lb.

K2- 0.0122 " M 2- 0.437 ?--1 -1.99 "

0(- 300: - 0.0350 lb-ft. M 1= 5.25 lb-ft. 2g = 0.590 lb.

4.- 0.0230 " M2- 0.333 " - -2.55 "

01- 450 - 0.0535 lb-ft. Rj- 5.25 lb-ft. , - 0.615 lb.

K.- 0.0324 " Fi= 0.056 -3.64 "

d - 600 4- 0.0685 lb-ft. M1 - 4.48 lb-ft. L0 - 0.555 lb.

KL- 0.0326 " mL- -0.460 " .- - 495 "

- 750 K- 0.0825 lb-ft. M, - 3.02 lb-ft. ii- 0.374 lb.

Kz.- 0.0243 " Me -0.830 " 4- -5.95 "

-1 .1050 R - 0.0825 lb-ft. Mj- -3.02 lb-ft. 2" - -0.374 lb.

K24- -0.0243 " M- -0.830 " -5.95 "

= -1200 j, - 0.0685 lb-ft. M1 - -4.48 lb-ft. Zg " -0.555 lb.

("2." -0.0326 " 2i- -0.460 " &72 -4.95 "

0 (1350 - 0.0535 lb-ft. H, -5.25 lb-ft. gu -0.615 lb.

KL -0.0324 " ML. 0.056 " 2 -3.64 "

)1-150 0= 0.0350 lb-ft. R, - -5.25 lb-ft. .m -0.590 lb.

4- -0.0230 " Mi.- 0.333 " 4- -2.55 "

o(.u1650 K" 0.0172 lb-ft. =-4.95 lb-ft. -0.610 lb.

- -0.0122 " M2.- 0.437 " -1.99 "
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Table 1.

Case (i): - ,2A- A/40

- 150: K, - 0.0172 lb-ft. Mi- 4.95 lb-ft. ?,- 0.610 lb.

K2" 0.0122 " HZ" 0.437 " " -1.99 "

o(- 300: Ri" 0.0350 lb-ft. M,- 5.25 lb-ft. 2g 0.590 lb.

K:rn 0.0230 " M2- 0.333 " " -2.55 "

S450 - 0.0535 lb-ft. F, - 5.25 lb-ft. ,- 0.615 lb.

K94- 0.0324 " R- 0.056 " Z- -3.64 "

- 600 K,- 0.0685 lb-ft. M" 4.48 lb-ft. ,- 0.555 lb.

Ki- 0.0326 " M2 -0.460 " -m - 4.95

0(- 750 -,- 0.0825 lb-ft. M,- 3.02 lb-ft. ij- 0.374 lb.

KL" 0.0243 " t - -0.830 " - 5.95 "

O -1050 K0 0.0825 lb-ft. MI" -3.02 lb-ft. Z, - -0.374 lb.

K4- -0.0243 " M2- -0.830 " 47' -5.95 "

c =1200 R, - 0.0685 lb-ft. M, - 4.48 lb-ft. g -0.555 lb.

K2 - -0.0326 " i- -0.460 " -4.95

0(-1350 K, 0.0535 1b-ft. Hi= -5.25 lb-ft. gu -0.615 lb.

KL- -0.0324 " H1 - 0.056 " . -3.64 "

oe-1500  "'. 0.0350 lb-ft. R, -5.25 lb-ft. -' -0.590 lb.

L- -0.0230 " H- 0.333 " 1. -2.55 "

o(-1650 R4" 0.0172 lb-ft. M,- -4.95 lb-ft. ,m -0.610 lb.

.- -0.0122 " M1- 0.437 " - -1.99 "



TmZ* I (Con'.,)

1m , .5L, 2A- ,/40

150 X' .,202 lb-ft. f- 8.48 t *t. t . -0.913 .§.

a.r0 ,21 " '- :0.236 " ; -,05

a(- 450 0.0580 lb-ft. M,- 7.18 lb-ft. l 0.1 05 lb.

* Z.- 0.0254 " 0.839 - 8.77 "

o- 7# 0.0828 lb-ft. M,- 3.03 lb-ft. 1.. Q3,M i+.

K= 0.0143 " Ilz = -1.49 " &1 +l0.8 "

a( -105 e9 0.0828 lb-ft. RM- -3.03 lb-ft. 1 -0.334 lb.

i4-0. o143 " R1-1.49 " -10.8 "

0(-1350 o, ,0,0580 lb-ft. M, - -7.18 lb-ft. -- 0.795 lb.

WI" -0.0254 " MI- -0.839 " - -8.77 "

O(-1650 R, 0.0202 lb-ft. M' - -8.48 lb-ft. , - 0.9),% lb.

, .,O%.012l " -0.236 " - -7.0k "

gjb(iii): X- 0.75L, 2A - >'/40

d - 150 . 0,0126 lb-ft. M, 2.28 lb-ft. 0.210 b.

K1 " 0.0906 " M2. 0. 612 " u -0.0840 lb.

-4 °50 -L. v-ft. M,- 3.36 lb-ft. = 0.411 lb.

tr..-.03 " 0.339 " -1.26 "

:- 750 - 0.080L lb-ft. ,- 2.28 lb-ft. ,- 0.308 lb.

Ki,-.060 '* M z = -0.572 " -3.74 "
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Table I (Con't.)

0g'105*0  :K,-"0.0861 lb-ft. - -2.28 lb-ft. 7,,-0.308 lb.

, -0.0260 "- -0.572 " -3.74 "

," 0.0472 lb-ft. M- -3.36 lb-ft. .- -0.411 lb.

42- -0.0322 " 0.339 -1.Z6 "

oK-1..5 °  ',- 0.0126 lb-ft. M,"-2.28lb-ft. -- 0.210 lb.

KL" -0.00906 " Me. 0.612 " -0.0840 t
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where use has also been made of (2.7) through (2.9).

Before proceeding to the explanation of the analogue simulation

lot us restate the assumptions which have been made in arriving at

values for the various coefficients in the equations of motion.

1. The coefficients of the terms representing hydrodynamic

forces and moments are constants equal to representative values

obtained experimentally.

2. The waves are sinusoidal.

3. The magnitudes of the external forces and moments are ob-

tained from the Froude-Krylov theory in conjunction with the "long

wave approximation."

All of these assumptions seem justified since it is not our

intention to give a detailed study of the motion of the Series 60,

CS - 0.60 ship model. Rather we are concerned with studying a

basic phenomenon, and this model has been adopted only to arrive at

realistic, if not completely accurate, values for the various terms

appearing in the equations of motion.

Now that definite values have been chosen for the coefficients

in the equations they may be simulated on the analogue computer,

which is the subject of the next section.

4. Analoue Simaulation.

In simulating a problem such as this on the analogue computer

it is necessary that the output of any operational amplifier not

exceed ± 100 volts. To satisfy this requirement, it is necessary

to .tintroduce scale factors between the physical variables and the

machine variables (i.e. voltages)based on the estimated size of the

former. From physical considerations we may state that the largest
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value of I2 j to be expected is 1/6 ft., the largest value of 181

to be expected is 1/5 radian, and the largest value of 101 to be

expected is 2 radians. Thus if we define
I

Gw(oo" Y = -0oe = 5, (4.1)

the machine variables X, Y, and Z will all be less than 100 volts

in absolute value. Substituting (4.1) in (3.1) through (3.3) gives

= - - ,51 - O72.o X -0.411 Y-o.Z.boYZ (4.2)

Y =-8(..oY -,59Y -o.48 11(4.3)

-5~7. -0-492 5-0 M ' - o ,S%

X=-24.4 X -0-3" X-O149 Xk-o.4o-7X-Z

-o,&64 X Y+o kc.t 4 K-61- Lit (4.4)

It is also convenient to have the absolute values of all the co-

efficients in the equations less than 1 which can be accomplished

by a change of time scale defined by

* T -10t (4.5)

where T is now the machine time and ' is real time. After this

change of variable we obtain the final equations

00 00 100 (4.6)

y"'-o~~o-_59' y,_,e yL_%g X_1.7. g
I oo 00 00 (4.7)

-0, o056s7 2-0.044Z a 'MlcoS " SM' lA " r
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"-o 0.Z44X -o0.o045X 1-o.0 1.cl X' X 1-oo X7

XY+ 0. (4.8)

where primes denote differentiation with respect to T.

The simulation of these equations is done in accordance with

the block diagram shown in Figure 3. The triangles represent phase

inverters, the triangles with rectangles along one side represent

sunning integrators, the circles on the input sides of the integrators

represent potentiometers, the initial conditions (if any) are shown

above the integrators concerned, and the multiplication by a con-

stant performed through each integrator or phase inverter is shown

opposite the corresponding input. The computer used was a Berkeley

Ease (Electronic Analogue Simulating Equipment) electronic analogue

computer manufactured by Berkeley Division of Beckman Instruments,

Inc., and is shown in Figure 4.

The simulation of a complex problem such as this on an analogue

computer presents many oppertunities for making errors, particularly

in making the external connections into the patch bay of the computer,

and since the solutions of equations (3.1) through (3.3) are not

known, such errors may not be easily detectable. However, these

equations contain equations (2.4) through (2.6) as a special case

which may be recovered by setting certain nonlinear terms equal to

zero. Since the stability of these latter equations is well estab-

lished we may use that theory to check the validity of the simulation.

To do this the patch board was first wired to simulate equations

(3.1) through (3.3) in accordance with the block diagram shown in

Figure 3. Then appropriate coefficients were set equal to zero so

that the resulting simulation was that of equations (2.4) through

(2.6) except now definite values have been assumed for the coefficients.

We then sought the values of 0 for which the rolling was unstable.
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-25

277 = 50 cos, W T
2

25

2C=50 sin *T
2

2 W2 I I I -> , D

>

0.- -Z 0.794
-Z

0.351
X2

100 0.72

100 0.411
YZ -Z
100 0.26

-Y >0 .095

0- yl <&-

50cos * T z
0-- 6.4 Z

50sin W TIT

FIG, 3 BLOCK DIAGRAM FOR EQUATIONS (4.6),(4.7), (4.8)
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0 -Y 0.259
y -40 1 y
,A0 1 X2 0.4

0.366
Z2 4 -Y

IOL II

-- Z 0.056 > -Y

-Z G049 0-YC[Fi 
I

o Cos T .55

50sin T 55

x .244 
ABS. VAL. '0 1 x'l

-XI 
0.035

X1
100 0.740 

-xxz
0.407

0.3

50 c o s T(,O T tj-2-
O-X

50 sin Oj T aTO 2

FIG. 3 (CONTINUED)
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FIG. 3 (CONTINUED)
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The case A- L , o(- 450 was chosen for the computation and

samples ef the rolling response obtained for values of W near the

stability threshold are shown in Figure 5. It can be seen that near

the threshold a small change in (Ad produced a large change in the

character of the solution. The unstable solutions showed a sus-

tained growth in amplitude which would have continued indefinitely.

It was found that the rolling motion was unstable for 8 .28 u.)<

10.5 whereas the theory predicts unstable rolling for 8.26<(d<10.6.

The error in the bounds of the range of L) for which the rolling

was unstable obtained by the computer is less than 1 which seems to

indicate that the basic network was correctly constructed. There-

fore, it seems reasonable to conclude that the network will give

the correct particular integrals of (3.1) through (3.3). The pre-

sentation and discussion of these integrals is the subject of the

next section.

5. Computer Results.

It was found that for the cases where' X- L and X- 0.75L

the rolling response had the general appearance shown in Figure 6.

It was found that for thee two cases there was a range of exciting

frequencies for each value of cA for which the roll amplitude tended

to grow, Just as was observed for the solutions of the Mathieu

equation shown in Figure 5. However, because of the second order

damping term in the rolling equation the growth in amplitude did not

continue indefinitely, but instead reached a steady-state value.

Nevertheless, because of the similarity to the solutions of the

Mathieu equation we will term such motion "unstable." To give some

idea of the rolling amplitudes attained we refer to Figure 7 which
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-0)

00

0.50-

(c) Stable Solution,

W=~)7.02 rad/sec

1sec.

-0.50-

-02

00

(d) Unstable Solution,

W -7.1o rad/sec

Figure b (cont.) Rolling Response for A-L, a(-45 0, 2A. X/40'
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40-
wI

00-

-101
0 0.1 0-2 0.3

FR0UDE No.

FIG.?7 ROLLING AMPLITUDE AS A FUNCTION
OF w FOR X-La =45*'2APX/4 0

w, rod /sec.
507 8 ___ 9 10

40~

2- 0

120

0 0.1 0.2 0.3
FROUDE No.

FIG. 8 ROLLING AMPLITUDE COMPUTED FROM
LINEAR THEORY FOR X:L, a=45*, 2Az X/0
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shows the maximum amplitude as a function of W and Froude number

for 0(- 450 and /- L, and for comparison the same curve is

plotted in Figure 8 in which the rolling amplitude was calculated

using linear theory.

Although the rolling response did exhibit the instabilities

just described for - L and X- 0.75L, .they did not occur at

values of J predicted by the theory based on the inhomogeneous

M.athieu equation, which is not surprising considering the assumptions

made in that development. Instead the unstable regions were found

to be much broader, in general, than those predicted by that theory,

as may be seen by Table 2, which shows the comparison for the

special case )= L, 2A - X/40. Nevertheless, as may be seen,

the instabilities did occur for values of in the neighborhood

of 1/2 as the theory predicts.

For the case where X 1.5 L the rolling response was found to

be quite different from that obtained for X - L and X- 0.75 L,

as may be seen by Figures 9 and 10. Because of the very large roll

angles obtained the motions found in this case are very difficult to

interpret physically since the equations of motion are no longer

valid. Nevertheless, the results are interesting since they clearly

show the effect of the nonlinear terms when the displacements are

large.

The solutions obtained showed, in general, that for each

. heeding of the model with respect to the direction of wave travel

there were values of () for which the rolling was unstable. The

model's speed corresponding to these values of W was then found

from the following equation
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Table II

150 0.486 <," < 0.535 0.454 < < 0.672

300 0.476< 4- <O0.562 0.463 <- <0.692

450 0.466< < 0.597 '0.463 < 0.700

60° 00.455 - < 0.630 0.458< -, 0.714

750 0.447 < < 0.653 0.455 < < 0.700

(I): Range of "0 / for which solutions to the Mathieu

equation (2.6) are unstable.

(II): Range of "/W for which solutions to equation (3.3)

are unstable.

In both cases A - L, 2A - A/40.
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-1.0

-0.5

1.0

(a) Stable Solution,

LJ-3.74 rad/sec I*j sec.

-2

0 0
44

(b) Unstable Solution,

WA. -3.88 rad/sec

-1.0-

-0.5-

0 7

1.0 -

(c) Stable Solution, W-4.00 rad/sec.

Figure 10 Rolling Response for A=l.JL, Qi=10!) 0 2A=~ >/IO
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-- ¢o

where kJW is the velocity of gravity waves given by

The results of the stability study may be found in Figures 11

and 12 which show, for each value of o4 , the range of Proude num-

bers for which the rolling was found to be unstable. For rouds

numbers between 0 and 0.35 it was found that the rolling motion was

always stable for values of o4 2_ 1050 for the cases where X-L and

S- 0.75 L, and hence these parts of Figure 11 are omitted.

In addition to the growth in amplitude, the unstable rolling

motions had the unusual characteristic that the period of the steady-

state response had a value equal to twice the period of wave encounter,

while the stable motions had a period equal to the period of the

external excitation. This is clearly seen in Figure 13 (a) and (b).

In the former the period of wave encounter, T , corresponding to

£0- 8.84 rad/sec. is 0.711 sec. while from the motion record the
period of roll is found to be 1.4 secs. In the latter, the value

of T corresponding to J - 7.01 rad/sec. is 0.897 secs. while from

the Motion record the period is found to be 0.9 sec. Figure 6 (b)

shows an example of a rolling response near the threshold of the un-

stable region where the time between alternate large rolls is again

equal to twice the period of wave encounter. We will have more to

say about this phenomenon in the next section.
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6. Discussion and Conclusios.

We have seen that when the frequency Of wave encounter, L , is

in the neighborhood of twice the natural frequency in roll, 4

the rolling response has the following two distinctive characteristics:

(1) the amplitude tends to grqw to a large but finite value, and (2)

the period of the steady-stote responoe is equal to twie the period

of the excitation. This behavior cannot emerge from, nor can it be

studied in, a linear analysis. For if all the nonlinear terms are

neglected, the equation of motion for roll'is no longer coupled with

those for heave and pitch, and is linear. One is .then led to the

conclusions that large roll amplitudes may be expected only, when the

exciting frequency is near the natural rolling frequency,. the reson-

ance condition, and that in any case the frequency of the steady-

state response is equal to the frequency of the excitation. There-

fore, we see that the inclusion of the second order static coupling

terms, which are known to exist, in the equations of motion produces

a rolling behavior which is in direct c'ontradiction to that predicted

by linear theory. However, in this study we aFe dealing only with

solutions to certain differential equations, and whethex or not the

rolling motion of an actual ship moving in oblique waves would

exhibit such behavior depends upon how well those equations approxi-

mate the true equations of motion, a question which can only be

answered by model experiments.

Some experiments with Series 60 models moving in oblique waves

have recently been performed, the results of which may be found in

(111 and 112]. The results show that in bow seas the roll amplitude

was always of the order of 50 for Froude nunbers between 0 and 0.4,
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1 iah d.4 not conform with our results shown in Figure 7. However,

t6 iepacy may be attributable to tvo .main factors. First of

all, in Ariving the equations of motion .t we& assumed that all

motions are small in the sense that third otdet .terme may be

neglected, and therefore, for such large roll angles-lia validity

of those equations is questionable. It seems appar4bt ff the com-

puter study that within a certain range of Fro1ade nubers the, .olling

motion may tend to become large, but how large is difficult 'tV y

at this point. Secondly, the models used in the expariments de~ribed

in [11) were all equipped with bilge keels, and in both :tudies the

waves used in the experiments were not very severe. (In Ill] and [12]

the wave heights were taken equal to A/50.-and A/48 vappiotLvely).

Therefore, it seems likely that the damping in roll wad' too Iawge

"cmpared to the wave excitation to produce unstable rolling.

On the other hand, rolling motions in which the resese had a

period equal to twice the period of wave eneounter ,.were observed

during the experiments reported in (12], w ere, a recorded rolling

motion is presented (Figure 24 of that paper) that very closely re-

sembles that shown in Figure 6 (b) of this paper. In connec.tton

with this, Lewis and Numata state that such rolling motions were

observed when the period of wave encounter was approximately one

half the natural period in roll. However, they also point out that

in other cases where the two periods did have this relationship,

normal records were obtained. No definite explanation for this be-

havior is given there, but based on the cqputer study we are in a

position to offer an explanation.

First of all it is evident from this investig ion that the

presence of the nonlinear static coupling between heave, pitch,, -and
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roll is sufficient (provided the damping in roll is not too large)

to cause such behavior and that no motions other than these need to

be involved. Secondly, we have found that such behavior is a prop-

erty of an unstable or nearly unstable rolling motion as we have

defined. Now, for unstable rolling to occur it is necessary but

* not sufficient, that the frequency of wave encounter be in the neigh-

borhood of twice the natural rolling frequency. Whether or not un-

stable rolling actually occurs depends upon the relative strength of

the excitation compared to the damping in roll. This then explains

why in one case a "normal" rolling behavior and in another case an

abnormal" rolling behavior can be observed even when in both cases

the frequency of wave encounter is in the neighborhood of twice the

natural rolling frequency. If the rolling is unstable, then it

exhibits a period equal to twice the period of wave encounter, which

as a consequence is nearly equal to the. atur&l period.

To be completely accurate, the "erratic" rolling motion ob-

tained by Lewis and Nznata does not satisfy our definition of unstable

rolling since the amplitude is not increasing and shows no tendency

to do so and hence the above explanation is not strictly applicable.

In fact it is not quite periodic so it is meaningless to speak of

its period as being twice the period of excitation. However, it

does closely resemble the computer solution shown in Figure 6 (b),

and therefore we may disa*sb it with reference to that solution.

As may be seen the ablution in Figure '6 (b) is classified as

stable but is very near the stability threshold. Furthermore, the

initial portion of the solution is almost periodic, the time between

the alternate large rolls being precisely twice the period of the

excitation. However, this behavior is transient and gradually dies



out leaving a steady state response which is periodic, the period

being equal to the period of the excitation. The close resemblanae

of the above mentioned rolling motion to this solution seems to indi-

cate that what Lewis and Nauata actually, observed was the transient

portion of a rolling motion which was very near the stability thresh-

old, the transient being almost periodic with period equal to twice

the period of wave encounter and which as a consequence was nearly

equal to the natural period.

The investigation described in this paper can only be considered

as an initial step in the investigation of the effect of nonlinear

static coupling on the rolling stability of a ship moving in oblique

Vaves. However, it does suggest a possible area of study for those

experipentors engaged in the testing of models in wavqs.
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APPENDIX

Formulas for the calculation of the coefficients of the terms

involving the displacements in the equations of motion are presented

in [11. Those which depend only on the geometry of the submerged

volume are A

Z 2Q I AWX

where Aw is the area of the equilibrium water plane, xF is the

x-coordinate of the center of flotation,- is the density of the

water, and y/ 6x is the slope of the top'sides at the water

line (positive for tumblehome). The remaining coefficients depend

on the location of the center of gravity as well as the geometry of

the submerged volume add are given by
1

K 96 = -LAMr

MI Y,+,,u AV

Several sign errors were made in the derivation of these formulas

in [1] which have tow been corrected.
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where IL is the moment of inertia of the ,equilibrium water plane

about the y-axis, zB is the z-coordinate of the center of buoyancy,

zw is the x-coordinate of the point where the z-axis cuts the eqil-

ibrium water plane, and b(x) is the half breadth of the equilibrium

water plane.

For these computations we chose GK to be 5% of the beam or

0.40". From the geomitry of the submerged volume we found for this

model that BKT P 1.51" and that the center of buoyancy was 1.46"

from the water plane. Thus

zw - 1.51" - (0.40" + 1.46") - -0.35" - -0.0292'

and

% - -0.35" + 1.46" - 1.11" - 0.0925'

Now all that remains to evaluate these coefficients is to perform

the numerical integrations.

The heaving force and the rolling and pitching moments pro-

duced by the waves were calculated from the following formulas

it

i-I

L -Ae [ [(,) -1CS(X']C-oS k x A '

M-At 1 () x -K2 cosKk XKjjA k211 -Kath

K qIq~



S()W station area zk- vertical offset of
?- the base line

A -wave mplitude K1 - K coso.
K2 - K sin&
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